Автор Тема: Система нейтрализации отработавших газов  (Прочитано 7530 раз)

0 Пользователей и 2 Гостей просматривают эту тему.

Оффлайн Dustmaker

  • ГАЗ-310221 ЗМЗ-406 Е2
  • Администратор форума
  • *****
  • Сообщений: 31546
  • Country: ru
  • Активность:
    0%
  • Карма: +1/-1000
  • Make dust or eat dust
    • ВОЛГАУНИВЕРСАЛ
Экологическая чистота выхлопа закладывается в конструкцию двигателя и автомобиля на стадии проектирования. В эксплуатации характеристики токсичности должны оставаться стабильными. Регулировка токсичности у двигателей современных автомобилей в большинстве случаев или не требуется, или ограничена. В то же время у двигателей автомобилей прошлых лет выпуска, особенно с карбюраторами, токсичность выхлопа напрямую связана с техническим состоянием системы питания и зажигания и их регулировкой. Ремонт двигателя не может считаться квалифицированным и качественным, если токсичность выхлопа двигателя после ремонта превышает установленные допустимые пределы.

Автомобили загрязняют атмосферу углеводородами и оксидами азота на 30%, оксидами углерода на 90%. При неблагоприятных условиях в приземных слоях атмосферы образуются ядовитые туманы (смоги). В отработавших газах автомобильных двигателей насчитывается свыше 100 различных компонентов, большинство из которых токсичны. Бензиновые двигатели по сравнению с дизельными обладают большей токсичностью. Наиболее токсичными компонентами отработавших газов бензиновых двигателей являются: оксид углерода (СО), оксиды азота (NО), углеводороды (СnHm), а в случае применения этилированного бензина - свинец. В отработавших газах обнаружен акреолин, который поступает в окружающую среду (особенно при работе дизельных двигателей). Он имеет запах пригорелых жиров (при содержании более 0,004 мг/л ), вызывает раздражение верхних дыхательных путей, а также воспаление слизистой оболочки глаз.

Оксид углерода образуется в бензиновых двигателях при сгорании топливовоздушных смесей с недостатком кислорода, а также вследствие диссоциации диоксида углерода, возникающей при высоких температурах. В обычных условиях СО - бесцветный газ без запаха, он легче воздуха и поэтому легко распространятся в атмосфере. Механизм токсического действия СО определяется способностью превращать часть гемоглобина крови в карбоксигемоглобин, вызывающий нарушение тканевого дыхания. Наряду с этим СО оказывает влияние на тканевые биохимические процессы, влекущие за собой нарушение жирового и углеводного обмена, витаминного баланса. Токсический эффект СО связан с его непосредственным влиянием на клетки центральной нервной системы. При действии на человека СО вызывает головную боль, головокружение, быструю утомляемость, раздражительность, сонливость, боли в области сердца. Острые отравления наблюдаются при вдыхании воздуха с концентрацией СО более 2,5 мг/л в течение 1 ч.

Оксиды азота в отработавших газах образуются в результате обратимой реакции окисления азота кислородом воздуха под воздействием высоких температур и давления в цилиндрах двигателя. Повышение максимальной температуры рабочего цикла и избыток кислорода - основные факторы, способствующие образованию оксидов азота. По мере охлаждения отработавших газов и разбавления их воздухом оксид азота превращается в диоксид.

Оксид азота NO - бесцветный газ, диоксид азота NO2 - газ красно-бурого цвета с характерным запахом. Оксиды азота при попадании в организм человека соединяются с водой. При этом они образуют в дыхательных путях соединения азотной и азотистой кислоты. Оксиды азота раздражающе действуют на слизистые оболочки глаз, носа, рта. Воздействие диоксида азота способствует развитию заболеваний легких. Симптомы отравления проявляются через шесть часов в виде кашля, удушья, возможен нарастающий отек легких.

Причиной образования углеводородов СН является неоднородность состава горючей смеси в камере сгорания двигателя, а также неравномерность температуры и давления в различных ее частях. В некоторых зонах сгорания топливо практически не сгорает, так как происходит обрыв цепной реакции окисления углеводородов. В низко нависших над асфальтом облаках СН и NO под воздействием света происходят химические реакции. Разложение оксидов азота приводит к образованию озона. Озон не стоек и быстро распадается, но только не в присутствии углеводородов (СН) - они замедляют процесс распада озона, и он активно вступает в реакции с частичками влаги. Образуется стойкое облако мутного смога.

Некоторые углеводороды СН являются канцерогенными веществами (бензопирен), переносчиками которых могут быть частички сажи, содержащиеся в отработавших газах. Озон разъедает глаза и легкие, а выбросы NО участвуют в формировании кислотных дождей. В отработавших газах дизельного двигателя обнаружено канцерогенное вещество диоксин (циклический эфир), представляющий собой бесцветную горючую жидкость. Диоксины и близкие им соединения во много раз токсичнее таких ядов, как кураре и цианистый калий.

В случае применения этилированных бензинов около 50% свинца осаждается в виде нагара на деталях двигателя и в выхлопной трубе, остаток уходит в атмосферу. Свинец присутствует в отработавших газах в виде мельчайших частиц размером 1-5 мкм, которые долго сохраняются в атмосфере. Концентрация свинца в атмосфере придорожной полосы в 2-20 раз больше, чем в других местах. Присутствие свинца в воздухе вызывает поражения органов пищеварения, центральной и периферической нервной системы. Воздействие свинца на кровь проявляется в снижении количества гемоглобина и разрушении эритроцитов.

О проблеме загазованности крупных городов впервые заговорили в США, где эта проблема встала после второй мировой войны связи с высокой степенью автомобилизации. В конце 1960 гг., когда мегаполисы Америки и Японии стали задыхаться от смога, законодательные акты об обязательном снижении уровня токсичных выхлопов новых автомобилей вынудили промышленников усовершенствовать двигатели и разрабатывать системы нейтрализации. В 1970 году в Соединенных Штатах был принят закон, в соответствие с которым уровень токсичных выхлопов автомобилей 1975 модельного года должен был быть в среднем наполовину меньше, чем у машин 1960 года выпуска: СН - на 87%,СО - на 82% и NО - на 24%. Аналогичные требования были узаконены в Японии и в Европе.

Первым делом инженеры бросились совершенствовать системы питания и зажигания. Но добиться существенного улучшения ситуации с токсичностью без применения дополнительных устройств невозможно. И в начале 1970 гг. появились первые каталитические нейтрализаторы отработавших газов, двухкомпонентные, так называемого окислительного типа. Двухкомпонентными они назывались потому, что могли нейтрализовать только два токсичных компонента - СО и СН. Происходившие реакции представляли из себя окисление (дожигание) молекул СО и СН с образованием углекислого газа и воды.

Принципиально конструкция нейтрализаторов с течением времени не менялась и представляет собой корпус из нержавеющей стали, включенный в систему выпуска до глушителя. В корпусе располагается блок носителя с многочисленными продольными порами, покрытыми тончайшим слоем вещества катализатора, которое само не вступает в химические реакции, но одним своим присутствием ускоряет их течение. Химикам известно множество катализаторов - медь, хром, никель, палладий, родий. Но самой стойкой к воздействию сернистых соединений, которые образуются при сгорании содержащейся в бензине серы, оказалась платина. Ею, в чистом виде или с добавлением палладия, стали покрывать керамические соты нейтрализаторов.

Чтобы увеличить площадь контакта каталитического слоя с выхлопными газами, на поверхность керамических сот наносится подложка толщиной 20-60 микрон с развитым микрорельефом. Под давлением ужесточения законодательства прогресс пошел дальше. Применение каталитических нейтрализаторов (КН) потянуло за собой распространение бессвинцовых бензинов, поскольку содержащийся в обычном этилированном бензине тетраэтилсвинец (ТЭС) «отравлял» платину, сводя на нет ее каталитическое действие. Автопроизводители стали переводить двигатели на неэтилированный бензин, а нефтяные кампании - увеличивать долю его выпуска. На американских автомобилях 1975 года появились транзисторные системы зажигания с высокой энергией искры и свечи с медным сердечником центрального электрода - это свело к минимуму пропуски зажигания и последующие вспышки несгоревшего топлива в нейтрализаторе, которые грозят оплавлением керамики.

С окислами азота NO ним боролись понижая температуру сгорания горючей смеси - оснащали двигатели устройствами рециркуляции отработавших газов в камере сгорания (EGR). Позднее появились трехкомпонентные системы, каталитический слой которых, как правило, содержит не только платину и палладий, но и добавку редкоземельного элемента родия. В результате химических реакций на поверхности разогретого до 600-800 °C катализатора вредные компоненты СО, СН, NО превращаются в воду, углекислый газ и азот.

Носителем в нейтрализаторе служит керамика - монолит со множеством продольных сот-ячеек, на которые нанесена специальная шероховатая подложка. Это позволяет максимально увеличить эффективную площадь контакта каталитического покрытия с выхлопными газами - до 20 тысяч кв.м. Причем вес благородных металлов, нанесенных на подложку на этой площади, составляет всего 2-3 грамма. Керамика выдерживает температуру до 800-850 °C. Но при неисправности системы питания и длительной работе на переобогащенной рабочей смеси монолит может оплавиться - тогда каталитический нейтрализатор выйдет из строя. Особенно проблематично использование керамических каталитических нейтрализаторов с карбюраторными двигателями.

В качестве носителей каталитического слоя используются и тончайшие металлические соты. Это позволяет увеличить площадь рабочей поверхности, ускорить разогрев каталитического нейтрализатора до рабочей температуры и расширить температурный диапазон до 1000-1050 °C. C появлением современных двигателей, работающих на переобедненных смесях, возросли требования к каталитическим нейтрализаторам - они должны выдерживать жесткие условия, с которыми керамика не справляется. Основную массу токсичных соединений современные двигатели выбрасывают сразу после холодного старта. Поэтому нейтрализатор стараются разместить ближе к выпускному коллектору, где он быстрее выходит на рабочий температурный режим. Появились нейтрализаторы с металлическими электрообогреваемыми сотами, которые сразу после поворота ключа в замке зажигания раскаляются при пропускании сильных токов в сотни ампер. Широкое использование нейтрализаторов стимулировало рост рынка благородных металлов: 35% потребляемой платины, 45% палладия, 90% родия идет на нужды автомобильной промышленности.

Помимо нейтрализатора, на многих японских и американских двигателях устанавливают термические реакторы. Такие устройства позволяют при подмешивании к отработавшим газам воздуха доокислить СО и СН, снижая их концентрацию за счет реакции с кислородом воздуха при температуре свыше 500 °C. Реакторы эффективны на режимах богатой смеси при больших нагрузках, не выходят из строя со временем, однако не дают полного окисления СО и СН, поэтому применяются как дополнительные устройства перед нейтрализатором. Кроме того, часто применяют и рециркуляцию отработавших газов с целью снижения выбросов окислов азота. Рециркуляция предполагает отбор выхлопных газов в количестве до 10-12% и подачу их на вход двигателя на режимах средних и полных нагрузок.

Для эффективной работы трехкомпонентного нейтрализатора нужно выдерживать состав горючей смеси в диапазоне так называемого стехиометрического отношения воздух/топливо, значение которого лежит в узких пределах 14.5-14.7. Если горючая смесь будет богаче, то упадет эффективность нейтрализации СО и СН, если беднее - окислов азота. Поддерживать стехиометрический состав горючей смеси можно управляя смесеобразованием, получая информацию о процессе сгорания, через организацию обратной связи. Для этого в выпускной коллектор поместили кислородный датчик - так называемый лямбда-зонд.

Он вступает с раскаленными выхлопными газами в электрохимическую реакцию и выдает сигнал, уровень которого зависит от количества кислорода в выхлопе. По результатам анализа, которым занимается электроника, можно корректировать состав смеси в ту или иную сторону. В качестве кислородного датчика в подавляющем большинстве систем топливодозирования используется датчик на основе двуокиси циркония. Чувствительным элементом лямбда-зонда является колпачок, сделанный из керамической двуокиси циркония.

Внутренняя и внешняя поверхности колпачка покрыты платиной или ее сплавом, что выполняет роль катализатора и токопроводящих электродов. Двуокись циркония при высоких температурах приобретает свойство электролита, а датчик становится гальваническим элементом. Принцип работы лямбда-зонда состоит в генерировании электродвижущей силы (э.д.с.), величина которой определяется соотношением парциальных давлений (содержанием свободного кислорода в отработавших газах и в окружающем воздухе). Особенностью «циркониевого» датчика является то, что при незначительных изменениях состава смеси  э.д.с. на выходе скачком изменяется от нескольких милливольт до почти одного вольта. Такая характеристика датчика определяет алгоритм работы всей системы автоматического регулирования. Датчик работает в диапазоне температур 350-900 °C. Для расширения диапазона применяют датчики с электронным подогревом.

Упрощенный алгоритм работы системы коррекции модно представить в следующем виде: обогащенная смесь - сгорание - увеличение сигнала зонда - уменьшение расчетной длительности впрыска - впрыск - обедненная смесь - сгорание - уменьшение сигнала зонда - увеличение расчетной длительности впрыска - впрыск. Весь цикл непрерывно повторяется, состав смеси в системе с контуром обратной связи непрерывно изменяется.

В режиме замкнутого контура система работает только после достижения двигателем определенной температуры и прогрева кислородного датчика. Исключения составляют следующие режимы: режим максимальной мощности, режим торможения двигателем, режим ускорения, режим прогрева. На этих режимах сигнал кислородного датчика не учитывается. Введение контура коррекции проще всего реализуется в электронных системах впрыска дискретного действия. В таких системах происходит непрерывная коррекция длительности импульсов управления форсунками в соответствии с сигналами, поступающими от кислородного датчика.

В системах непрерывного действия, имеющих электронный блок управления, точная коррекция состава смеси также не вызывает затруднений и осуществляется посредством циклического изменения в небольших пределах тока, подаваемого блоком в обмотки электрогидравлического регулятора.

Наиболее сложным с точки зрения количества дополнительных конструктивных изменений в этом плане являются системы К-Джетроник и карбюраторы. В системе К-Джетроник точная коррекция состава смеси осуществляется посредством изменения давления в нижних камерах дозатора-распределителя. Такие системы (условное название К-лямбда) в достаточной степени отличаются от базовой версии. Давление топлива в нижних камерах системы К-лямбда не равно системному и может регулироваться благодаря перепуску топлива обратно в топливный бак через так называемый частотный клапан. Для управления этим клапаном используется сигнал изменяемой скважности, вырабатываемый специально вводимым в эту систему электронным блоком (скважность - отношение времени действия сигнала к времени периода повторения). Подобный принцип используется в карбюраторах с электронным управлением.

Развитием систем коррекции являются адаптивные системы с возможностью «самообучения» в процессе эксплуатации. Суть работы таких систем заключается в том, что по мере изменения характеристик различных систем и компонентов двигателя в процессе эксплуатации (например, загрязнение форсунок, уменьшение компрессии, подсос воздуха) в специальной области памяти блока управления накапливаются «поправочные коэффициенты», используемые процессором при расчете длительности времени впрыска на различных установившихся режимах. Это позволяет поддерживать стехиометрический состав смеси даже при значительных отклонениях в состоянии системы. Если обычные системы с регулированием обладают возможностью коррекции количества впрыскиваемого топлива в пределах 10-15% от базового расчетного значения, то адаптивные системы способны обеспечить диапазон до 40-50%.

Борьба с выхлопами дизеля

Дизельный выхлоп в первую очередь необходимо очищать от окислов азота, диоксида серы и сажи. Токсичные компоненты составляют 0,2-5,0% от объема отработавших газов, в зависимости от типа двигателя и режима его работы. Сажа сама по себе нетоксична, но она адсорбирует на поверхности частиц канцерогенные полициклические углеводороды, в том числе наиболее вредный и токсичный бензопирен. Сравнительно низкий уровень СО,СН и окислов азота в отработавших газах дизеля не требовал в прошлом установки специальных устройств для снижения токсичности. Однако ужесточение норм токсичности коснулось и дизелей - на многих моделях автомобилей с дизельными двигателями появились системы снижения токсичности выхлопа, включающие рециркуляцию отработавших газов, каталитический нейтрализатор и специальный сажевый фильтр. Такие фильтры через определенное время подвергаются регенерацией кислородом. Во время такой регенерации увеличивается выброс вредных веществ в атмосферу, а также возрастает тепловая напряженность двигателя.

В разработанной «Фольксвагеном» системе нейтрализации дизельного выхлопа регенерация происходит благодаря использованию диоксида азота, который содержится в катализаторе окисления. Катализатор окисления, расположенный рядом с двигателем, очищает отработавшие газы от СО и СН. В это время во втором катализаторе интенсивно образуется двуокись азота, необходимый для окисления твердых частиц. Для снижения в отработанных газах окислов азота использован накопительный катализатор окислов азота. Этот катализатор имеет специальное покрытие, которое позволяет ему как губке впитывать в себя поступающие из двигателя окислы азота. Через определенные промежутки времени необходимо очищать катализатор богатой горючей смесью.

Система очистки отработавших газов дизелей, созданная «Пежо», включает в себя блок управления работой двигателя, датчики давления, систему дозировки специальной присадки к топливу, систему питания Common rail и фильтр, который очищает от сажи и выполняет функцию катализатора. В качестве фильтрующего материала фильтра-катализатора используется карбид кремния, который имеет пористую структуру, где и накапливаются частицы сажи. Очистка фильтра осуществляется путем подачи топлива в цилиндры с запозданием, чем обеспечивается повышение температуры отработавших газов. Для снижения температуры регенерации фильтра применяется специальная присадка, подмешиваемая к топливу. Очистка фильтра происходит по команде блока управления двигателем после каждых 400-500 км пробега. Необходимость очистки фильтра определяется блоком управления на основании показаний двух датчиков давления на входе и выходе фильтра.

Таким образом, современные комплексные системы очистки отработавших газов для дизелей состоят из каталитических и жидкостных нейтрализаторов, а также сажевых фильтров. Их ресурс ограничен, а стоимость высока из-за использования катализаторов на основе благородных металлов. Один из альтернативных методов нейтрализации отработавших газов - использование низкотемпературной плазмы, которая состоит из положительно заряженных ионов и отрицательно заряженных электронов, полученных в специальных устройствах при различных видах импульсных высоковольтных электрических разрядов (коронный, барьерный), а также из нейтральных атомов и молекул.

Отработавшие газы дизеля направляются в плазмохимический реактор, предварительно пройдя сушку во влагоотделителе. В плазмохимическом реакторе к этим газам «подмешивают» масло. Под действием электрического разряда в трубках разрядного устройства частички сажи активно адсорбируют масло на своей поверхности. Для удаления сажи, частички которой находятся в масляном коконе, используется маслоотделитель. Сажа собирается в специальный контейнер, а масло после дополнительной очистки в фильтре продолжает циркулировать по замкнутому контуру. В результате удается обеспечить высокую эффективность поглощения частичек сажи - до 100% во всем диапазоне оборотов дизеля. Из маслоотделителя часть отработавших газов можно направить во впускной коллектор (рециркуляция). Это снижает содержание оксидов азота в выхлопе. К промышленному выпуску плазмохимических реакторов можно будет перейти, когда удастся сократить затраты мощности на электропитание реактора. В опытных системах они достигают 4-5% и более от мощности дизеля.

ОТСЮДА
 
No offtop, No flood, No overquoting, No spam, No post-clon = No problem
$лавэ €диной ₽оссии!
Только хардкор, только Аврора!

 

В быстром ответе можно использовать BB-теги и смайлы.

Имя: E-mail:
Визуальная проверка:
Наберите символы, которые изображены на картинке
Прослушать / Запросить другое изображение
Наберите символы, которые изображены на картинке:
Горьковский АвтоЗавод сокращённо (три буквы):
"Волга" это река или автомобиль?:
т р и п л ю с д в а минус 2 равно (цифра):


Wi-Fi точки в Москве
ßíäåêñ.Ìåòðèêà
Map